Volcanoes have coughed up ancient diamonds from hundreds of kilometers beneath the Earth's surface. Their trace impurities provide some priceless information about the first shifts in plate tectonics
July 25, 2011?|
?|
PRICELESS IMPERFECTIONS: Miniscule impurities in ancient diamonds might be able to give scientists big clues about the formation of Earth's first big continents--3 billion years ago.
Image: iStockphoto/Jezperklauzen
Girls and the rest of us aside, diamonds can be a geologist's best friend?especially if that geologist has a mass spectrometer and is looking for clues about what Earth looked like billions of years ago.
These precious rocks occasionally contain impurities trapped inside during formation billions of years ago. And with the right tools, scientists can mine these traces for date details and chemical composition to get a rare snapshot of early Earth. From such miniscule grains?sulfides and silicate in a new analysis?a pair of researchers is now proposing a date for the beginning of the modern plate tectonic cycle: 3 billion years ago.
Formed under ancient intense pressure deep in the mantle, these diamonds were occasionally spouted to the surface via volcanic eruptions. The cargo carried inside these marred diamonds started to look different starting around 3 billion years ago, containing traces of a rock, eclogite, that would have been more common with shallow melting of basalt. And that scenario is likely during the emergence of thick, moving continents like the ones we have today, assert the researchers in a paper published July 22 in Science.
With the tiny fragments of rock gleaned from these rare minerals, "we are seeing the beginning of a major period of slab subduction that is fundamentally different," says Steven Shirey, of the Carnegie Institution of Washington's Department of Terrestrial Magnetism and co-author of the new study.
Diamonds are for?billions of years
In the dynamic history of Earth, precise dates can be hard to come by?especially when they might extend back for billions of years.
To gather rough dates, "we've always had the rock record" from the surface, Shirey says. But continents and seafloors are in a constant state of recycling via weathering and plate tectonics, leaving very few masses safe from the forces of time.
Some extremely old chunks of continent do exist, however. Known as cratons, these masses have deep mantle roots that can reach down some 200 kilometers below the surface. And they contain diamonds that were formed by subsurface high pressures billions of years ago but have been protected by the relatively low temperatures there.
For the first half of its existence, Earth's surface was more of a fluid place, with bits of crust being formed here and there from rising hot mantle. But at some point, as the planet cooled, larger masses started to form and the cycle of supercontinents and plate tectonics as we know it today got underway.
"One of the key questions is: How far can we extend the current knowledge of processes that shaped the surface of the earth?" Shirey says.
From the outside, someone proposes to use tiny fragments of compounds trapped in rare diamonds "to draw conclusions about how the entire planet was operating 3 billion years ago, and it sounds a bit cheeky," says John Platt, a professor of Earth Sciences at the University of Southern California who was not involved in the new research. "But there's not a lot else that you can do," and diamonds are so hard that it makes them "very robust" samples for attempting such seemingly absurd dating attempts.
Dissecting diamonds
Diamond-based research can be a difficult endeavor. "Money matters here," Shirey says. He and his co-author, Stephen Richardson of the University of Cape Town's Department of Geological Sciences, both of whom have been studying diamond inclusions for years, must either purchase the diamonds?which usually range from 1/2 to 1 carat?or count on diamond distributors to donate them, "so we don't have total control over what we get," Shirey notes.
Although a flawless diamond might be hard to come by in the marketplace, ones with the kind of inclusions useful in geological analysis are perhaps even more rare. For example, to assemble a collection of 10 diamonds worth studying "it took us literally three years of De Beers setting the diamonds aside," Shirey says. For the new paper, he and Richardson reviewed previously published analyses from the past 25 years on some 100 sulfide inclusions and more than 4,000 silicate inclusions.
Some inclusions can be spotted with the naked eye, such as one smack in the center of the 80-carat Oppenheimer yellow diamond at the Smithsonian. But diamonds destined for Shirey's and Richardon's labs do not emerge unscathed. After verifying the inclusions with a scanning electron microscope, researchers have to slice into the diamonds with a laser and extract the tiny particles for analysis via mass spectrometer. The team compared results from both rhenium-osmium and samarium-neodymium radiometric dating of samples to arrive at estimates of when the minerals were locked inside of the diamonds. And that helps scientists to figure out when rock composition?and geologic?changes started to occur.
Scientific rifts
The new data fit in well with what many researchers have come to think about the shifting dynamics of the Earth's mid-history based on other rock and chemical evidence: there was a major shift some 3 billion years ago. As a jumping-off point, scientists like Shirey and Richardson are searching for clues in the past based on what we know about how Earth works today.
Source: http://rss.sciam.com/click.phdo?i=eace9dd7336fc45e82746a91b6771cee
trey songz idris elba daniel craig leverage leverage big sean rick ross
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.